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ABSTRACT 

 Corpus design for speech synthesis is a well-researched topic in languages such as English 

compared to Modern Standard Arabic, and there is a tendency to focus on methods to automatically 

generate the orthographic transcript to be recorded (usually greedy methods), which was used in 

this work. In this work, a study of Modern Standard Arabic (MSA) phonetics and phonology is 

conducted in order to develop criteria for a greedy method to create a MSA speech corpus 

transcript for recording. The size of the dataset is reduced a number of times using optimisation 

methods with different parameters to yield a much smaller dataset with the identical phonetic 

coverage offered before the reduction. The resulting output transcript is then chosen for recording. 

A phoneme set and a phonotactic rule-set are created for automatically generating a phonetic 

transcript of normalised MSA text which is used to annotate and segment the speech corpus after 

recording, achieving 82.5% boundary precision with some manual alignments (~15% of the 

corpus) to increase the precision of the automatic alignment. This is part of a larger work to create 

a completely annotated and segmented speech corpus for MSA speech synthesis with an evaluation 

of the quality of this speech corpus and, where possible, the quality of each stage in the process. 
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Definitions and Abbreviations 

Back-end: Part of a complete TTS system which converts a sequence of phonemes with linguistic 

features to a speech signal. 

Bootstrapping (HMM models): Training an HMM model/s using manually segmented and 

aligned speech corpus for potentially using to segment another speech corpus by forced alignment. 

Buckwalter Transliteration (Buckwalter 2002): Is a one-to-one mapping between Arabic 

characters and Latin letters and symbols. Mainly used in this work because HTK cannot handle 

Arabic script as input. 

Diacritics and Diacritisation: Diacritics are symbols added to letters. In Arabic, they correspond 

to short-vowel phonemes, gemination or absence of short-vowel phonemes (sukoon). Diacritisation 

is the process of adding those diacritics to Arabic script. 

DNN: Deep Neural Network. In simple terms, Neural Networks which have more complicated and 

layered structure which requires different methods of training. 

Emphasis: Here it is the velarisation or pharyngealisation of consonants in Arabic (Laufer & Baer 

1988). They are secondary articulations which correspond to changes in the pharynx or epiglottis 

from the primary articulation. These movements are called ‘emphasis’ in this work for 

convenience. 

Front-end: Part of a complete TTS system which converts raw text to a phoneme sequence with 

linguistic features which is used as the input to a speech synthesiser (Back-end). 

Gemination: In Arabic, it is usually described as the doubling of a consonant. Usually the effect is 

dependent on the consonant’s articulation category. It is shown in this work that gemination in 

Arabic is more accurately described as the lengthening of part of the consonant. Linguistically, a 

geminated consonant is treated as two consecutive consonants when syllabifying a word. 

HMM: Hidden Markov Model. A sequential probabilistic model used to model speech for speech 

recognition and synthesis. 

Mel Frequency Cepstral Coefficients (MFCC): A parametric representation of the speech 

signal’s power spectrum in a short interval (Jurafsky & Martin 2008). 

MSA: Modern Standard Arabic. Is a standardised variety of Arabic which is used nowadays in 

official documents, news etc. 

Normalisation and Normalised Script: In Speech Synthesis, this refers to the input text after all 

irregular content in it has been converted into a form that can be phonetised by a machine. For 
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example, abbreviations for example HMM could be converted to “Hidden Markov Models” or 

“Aitch Em Em” by the normalisation process, making it easier to generate the phoneme sequence 

to be synthesised. The normalisation process also includes numbers, punctuation (such as brackets) 

and – in some cases – spell-checking (Taylor 2009). 

Phoneme: Not to be confused with phone, is the smallest unit of phonology in a language which – 

when changed – could change the meaning. Phonemes can be seen as classes of phones meaning 

that a phone is a realisation of a phoneme in a certain context (Taylor 2009). 

Phonotactics: The rules that govern the types of phonemes, syllables, consonant clusters etc. that 

are allowed to occur in speech (Habash 2010; Biadsy & Hirschberg 2009). 

Phonetic Unit: Phone, Diphone, Triphone, Syllable… is a phonetic or phonological segment 

which in corpus design is used to define the phonemic content required to be covered by the 

transcript.  

Phonetisation: The conversion of normalised script to a phoneme sequence. 

Pronunciation Dictionary: A list of pronunciations (phoneme sequences) used mainly in speech 

recognition and phonetisation. Every entry in a pronunciation dictionary contains an orthographic 

transcript of a word with the corresponding phoneme sequence describing how the word should be 

pronounced. Orthographic transcripts of words can repeat in different entries showing different 

possible pronunciations for the same word. 

Speech Corpus Design: The process of gathering prompts for recording by the speech talent. This 

also involves optimising the phonetic coverage of the speech corpus. 

Stress (Syllable Stress): Is the emphasis on a certain syllable in a word for the purpose of 

emphasising on the word itself to indicate that it has more semantic importance over the rest of the 

sentence. Emphasis here does not necessarily correspond to a certain articulation process as stress 

could realise itself in different ways (increased loudness, pitch, vowel length…) (de Jong & 

Zawaydeh 1999). 

Talent or Speech Talent: The person whose voice is recorded for the speech corpus. 

TTS: Text To Speech, a complete system for converting raw text to spoken utterances. This 

involves normalisation, phonetisation and synthesis. 

Utterance: A short script containing a small number of sentences (2 to 6) or a short recording 

corresponding to that script. The latter is sometimes referred to as “recorded utterance”. 

Viterbi Algorithm: Is a dynamic programming algorithm for finding the most probable sequence 

of states of an HMM which generated the observation sequence. 
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Chapter 1: Introduction 

Building a speech corpus – whether it is for speech recognition or speech synthesis – is a laborious 

and resource consuming task. In speech synthesis, corpus construction could include hiring a team 

of experts and native speakers to perform syntax error checks on the script before and after 

recording (recording in itself is resource consuming and should be supervised by experts); and 

aligning the phonetic transcript with the recorded speech which is the most time consuming (Yuan 

et al. 2013; Van Bael et al. 2007). Numerous methods to speed up the process have been employed 

in the past, most of which require previous speech data. This may be data that does not suit the 

target purpose, but could help in annotating the corpus automatically instead of human annotations 

which have a high cost and may result in disagreements between experts (Hosom 2009; Zue & 

Seneff 1996). 

One of the reasons why Arabic speech synthesis falls behind the state of the art is the lack of 

resources. Specifically, the lack of recorded, segmented and annotated material suitable for recently 

developed speech synthesis engines. This lack of resources makes it more challenging to create the 

automatic tools required to speed up the corpus construction process. 

The only speech corpora found in previous work were created by Almeman et al. 2013 which have 

been acquired from the author. Their multi-speaker speech corpus was built for speech recognition 

as it contains transcribed phrases with no granular segmentation at phone level. This corpus could 

be a valuable resource to this research and the possible uses of it will be investigated. The second is 

the “KACST Arabic Phonetics Database” (KACST) (Alghmadi 2003). This corpus was made for 

helping research in speech therapy, speech recognition and synthesis and is useful for this research 

as the recorded phones can be used for bootstrapping and training initial language models. 

These corpora, although possibly useful for bootstrapping models to segment other speech corpora, 

cannot be used for modern speech synthesis engines (Unit Selection, DNN or HMM). These 

systems require hours (usually 2 or more) of speech recorded in a controlled environment. The 

level of control has in previous work varied from studio recordings to audio books to telephone 

conversations. 

In this work, corpus design, recording and annotation are included as a complete process. The term 

corpus design is used in different ways in the literature. In speech technologies it usually means the 

selection of prompts to be recorded by the talent. This set of prompts should fit some criteria which 

the process of corpus design aims to fulfil. 

It is intended to build a single speaker Modern Standard Arabic (MSA) speech corpus for speech 

synthesis, primarily for Unit Selection speech synthesis that could also be used for Statistical 

Parametric Speech Synthesis. The speech talent recording the corpus is a native Arabic speaker 
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with a Levantine accent which is important to note because – as will be explained later – this 

affects the phonetics of MSA as some phonetic characteristics of the speaker’s dialect could affect 

their MSA pronunciation as well (Watson 2007) which was observed by experts who supervised 

the recording sessions. 

In section  1.1, the target synthesis method for which the corpus is built is presented and in 

section  1.2 the research contributions that will result from this effort are highlighted. It is important 

to note that the word “Arabic” will be used instead of MSA to describe things that apply to both 

Classical Arabic and MSA. 

1.1 Target Synthesis Methods 

In order to evaluate the corpus after it is built, Unit Selection and Statistical Parametric Speech 

synthesis were set as a combined target application of the corpus. The Unit Selection method of 

speech synthesis is one of the types of more general “Concatenative Methods” in speech synthesis. 

Other methods include diphone concatenation which produces less natural sound but require much 

less recorded speech and segmentation (Lenzo & Black 2000). 

In concatenative speech synthesis a sequence of speech units are chosen from a unit database that is 

populated from the segmented and aligned speech corpus. The units are chosen by phone identity 

and other criteria such as prosody, position in phrase, position in word etc. Then, after performing 

acoustic modifications on the individual segments, they are concatenated to produce the desired 

utterance (Black 2002). 

Along with Concatenative Methods, there are, what are called statistical parametric methods. The 

naming here is not always consistent. What is usually meant by statistical parametric methods is the 

assumption that the data is distributed by a probability distribution and the goal is to find the 

parameters for this probability distribution that optimises some criteria. The data in this case is the 

recorded speech with the aligned phonetic representation and the features extracted from the 

phonetic representation. An example of statistical parametric synthesis is HMM-based speech 

synthesis. In this type of synthesis the input text is converted into a sequence of phones and 

features representing context are extracted (part of speech, adjacent phones, pitch, prosody …). 

Based on these phones and features, a sequence of context dependent HMMs are chosen from the 

trained HMM database and these in turn generate the speech parameters (for example, mel-cepstral 

coefficients and the excitation). Then, the speech is synthesised from this low dimensional set of 

parameters using a vocoder such as STRAIGHT (Zen et al. 2007). 

There are other types of statistical parametric speech synthesis methods that can be used but are not 

covered in this work. The literature review shows that the HMM-based speech synthesis is the most 

popular method used (Zen et al. 2007; Kim et al. 2006; Qian et al. 2008; Lu et al. 2011; Maia et al. 
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2007). However, recently, Deep Neural Networks (DNNs) have been used to synthesise speech 

successfully with good results (Zen et al. 2013). 

1.2 Research Questions 

Having identified the issue of resource scarcity in Arabic speech synthesis, a set of research 

questions is presented to show how this and other related issues are to be solved: 

1- What is the phoneme set for MSA in a Levantine Accent? As shown later, this set could be 

different between different dialects in Arabic even if the speaker is speaking in MSA. If 

this is the case, which phonemes are common to all dialects and which are specific to the 

talents dialect? 

2- What are the phonotactic rules that govern MSA phonology in general and how does it 

change for a Levantine speaker? 

3- How accurately does an automatic segmentation system (HMM forced alignment) perform 

when using the phoneme sequence mentioned in the first research question, and a 

grapheme to phoneme converter based on the phonotactic rules mentioned in the second 

research question? This involves making adjustments to the HMM topology, boundary 

refinement and bootstrapping. 

4- As a future work, it is intended to use the corpus to build a Unit Selection synthesiser and 

perform listening tests to evaluate the quality of the synthesisers based on naturalness, 

correctness and intelligibility metrics. 

A broad overview of this work’s corpus construction process is provided in the following section. 

1.3 Creating a Speech Corpus 

Generally, the process of creating the speech corpora involves four stages: preparing a script, 

recording the corpora, generating the phonemic representation and aligning both together as the 

following sections explain (see Figure 1): 

1.3.1 Preparing Transcript 

Before recording, the transcript is gathered, corrected and normalised manually as no automatic 

normalisation system for MSA has been found. The script should originate from a source with 

relevant content. The content is then reduced (before or after correcting and normalising the 

transcript) to fit the cost requirements and while keeping phonetic coverage as high as possible 

within the cost constraints (this is referred to as optimisation). Section  2.1 covers this process in 

detail. 



 

14 

1.3.2 Recording 

Recoding speech is not a trivial effort. Several hours of speech is usually required for Unit 

Selection and all the parts of the recording should be reasonably uniform in terms of speed (words 

per minute), loudness (the average amplitude of the speech signal) and mood (happy, sad, angry, 

singing…). In addition, the recording has to be of a decent quality and preferably recorded in a 

studio. Black 2002 explains in general the considerations that must be taken when creating a speech 

corpus. 

There have been attempts to create Unit selection voices from recordings that were originally 

produced for different purposes such as news casts and audio books because of the availability of a 

transcript (Prahallad 2010; King 2013). This introduces issues in consistency; noise; background 

music and sounds which are not easy to remove. The transcripts of these recordings do not 

necessarily correspond to the actual recording, for example, a news anchor might make a mistake 

and include the word “apologies” with a correction in their speech which might not exist in the 

transcript. This is less likely to be the case when the transcript has been created prior to the 

recording and split into short sentences (utterances). This allows the rerecording of utterances 

where mistakes or mismatches with the script occur. 

For unit selection, the whole recording is best done by one voice talent. This puts a great strain on 

the talent’s vocal tract and requires a considerable amount of time and resources as the talent needs 

to take breaks. 

1.3.3 Generating the Phonetic Representation of the Transcript (Phonetisation):  

This could be done automatically depending on the language of the recording. In the case of 

English this requires a dictionary of phonetically transcribed words. In Arabic, this is a different 

task with less ambiguity as utterances are usually pronounced deterministically based on their 

written form – given that the transcript has the diacritics – but this is not necessarily always the 

case. This stage is important for both aligning and annotating the corpus and in speech synthesis 

front-ends (Malfrère et al. 2003). Section  3.1 covers phonetisation in detail by showing the set of 

rules used in phonetising MSA script and the irregularities (ambiguities) in these rules. 

1.3.4 Aligning the Recording with the Phonetic Transcript: 

If done manually, this is the most time and resource consuming out of the three stages. In this 

stage, each phoneme, syllable or other type of phonetic unit is assigned beginning and end time 

stamps in the recording. This is done in many ways and heavily covered in the literature (Hosom 

2009; Van Bael et al. 2007). 
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The transcript could either, be done automatically and then optionally revised by a group of human 

experts, or done by a group of experts in the first place. Even the use of experts is not going to 

deliver 100% precision because it has been shown that there are always disagreements between 

experts (Hosom 2009; Van Bael et al. 2007; Zue & Seneff 1996). These disagreements mostly arise 

on boundaries between consonants and vowels; a consonant and a glide or a glide and a vowel. So 

the goal of the automatic alignment systems is to achieve as close precision as possible to a human 

generated alignment. 

1.4 Structure of this Work 

In this work, the four main stages of producing the speech corpus will be described, highlighting 

the contributions given. The script extraction, reduction (optimisation) and recording are illustrated 

in  Chapter 2:, and then the phonetisation, annotation and alignment are described in  Chapter 3:. 

In  0, the quality of the alignments and transcript are shown in the generated corpus. As shown in 

Figure 1, the entire corpus construction process is divided into “Script Generation and Speech 

Recording” and “Alignment”. The research contributions presented lie in the former. The following 

is an explanation of each of the activities in the workflow: 

1- Scrape Aljazeera Learn Website (Aljazeera 2015): Collect Diacritised MSA script from a 

language learning website. 

2- Transcript Reduction: Reduce size of script to fit the resource limits while maintaining 

phonetic coverage as high as possible. This balance between cost and phonetic coverage is 

why this process is called optimisation. It will be referred to as either reduction or 

optimisation depending on context. 

3- First Correction: Orthographic and Syntactic Corrections: Experts perform 3 consecutive 

revisions of the script to correct orthographic and syntactic errors and normalise transcript. 

4- Recording Utterances: Supervised by two experts and a sound engineer in a recording 

studio. 

5- Second Correction: This is to match what was actually recorded to what is in the transcript. 

6- Phonetic Transcript Generator (phonetiser): Automatically generates the phoneme 

sequence for each utterance. It can generate multiple possible pronunciations. 

7- Segmentation and Alignment (Forced Alignment): The recordings and the phonetic 

transcript are aligned together using HMM forced alignment. 

8- Manual Alignment Correction: about 15% of the corpus’ alignments are manually correct 

for bootstrapping and realignment. 

9- Boundary Refinement: An optional automatic correction of boundaries generated from 

forced alignment. 

10- Bootstrapping: using manual alignment to increase the precision of forced alignment. 
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The “Alignment” (bottom) part of the workflow could be repeated after more manual 

alignments or boundary refinements have been done until an accepted precision is reached. 

Orthographic and 
Syntactic Corrections

Reduced Diacritised 
Script .txt

Reduce (optimise) script
Corrected Script 1
.txt

Recording Utterances

Recorded Speech
.wav

Second Correction to 
Match Script to 

Recordings

Phonetic Transcript 
Generator (Phonetiser)

Corrected Script 2
.txt

Forced Alignment

Phonetic Transcript
.txt

Alignment
.TextGrid/.lab

Model Parameters
.hmm

Manual Alignment 
Correction

Corrected Alignment
.TextGrid/.lab

Boundary Refinement

Recorded Speech 
(duplicate) .wav

Aligning Other Corpora

Start Here

End Here

Recorded Speech 
(duplicate) .wav

Recorded Speech 
(duplicate) .wav

Script Generation and 
Speech Recording 

Alignment

BootStrapping (Training 
HMM)

Refined Alignment
.TextGrid/.lab

Scrape Aljazeera 
Website

Diacritised 
Script .txt

 

Figure 1. Speech Corpus Construction Workflow 
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Chapter 2: Collecting and Reducing Transcript 

The transcript was collected from Aljazeera Learn (Aljazeera 2015), a language learning website 

which was chosen because it contained fully diacritised text which makes it easier to phonetise. 

The transcript was split into utterances based on punctuation, to make it easier for the talent during 

the recording sessions. 

After splitting the transcript into short utterances, the transcript was reduced (see Section  2.1) while 

maintaining acceptable phonetic coverage, then inspected to normalise the text and correct errors. 

This inspection was completed after reducing the transcript in order to decrease the manual labour 

required to clean the text, but this meant that the numbers and abbreviations were not included in 

the phonetic optimisation as they were not previously normalised. 

After the reduction and before the recording, the text transcripts extracted from Aljazeera Learn 

were inspected and normalised. Abbreviations and numbers written in digit form were converted to 

word form. This is because the talent expressed that it was difficult to produce the correct inflection 

for numbers phrases while reading, if they were not written as words. In this phase, unwanted 

characters were removed and replaced with their word representation for example ‘$’ which is 

converted to “دولار” which means “Dollar”. After the inspection, only Arabic words were left in the 

transcript. 

Extracting Raw text 
from Aljazeera Learn

Calculate Diphone 
Distribution of Each 
Utterance and the 
Whole Transcript

Split into Short 
Utterances

Reduce Transcript Record

 

Figure 2. Collection and Reduction of Transcript. 

2.1 Optimisation (Transcript Reduction) 

All the works reviewed for corpus optimisation for speech synthesis use greedy methods (François 

& Boëffard 2002; Bonafonte et al. 2008; Kawai et al. 2000; Kawanami et al. 2002; Tao et al. 

2008). Greedy methods as explained in the “National Institute of Standards and Technology” 

(Black 2005) are methods that apply a heuristic that finds a local optimal solution that is close to an 

initial solution. The initial solution and the heuristic/s were different between works in the 

literature. Also the unit of choice for optimisation (triphone, diphone, phone…) varies. It is 

important to say that greedy methods do not guarantee the production of a globally optimal solution 

as the corpus selection problem is Non-deterministic Polynomial-time hard (NP-hard) (François & 

Boëffard 2002) which needs a brute force search to find the optimal solution. This requires 

astronomical processing power as the number of possible solutions 2𝑛 where 𝑛 is the number of 

sentences. In our case the number of solutions is 22092 which is greater than 10600. 
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François & Boëffard 2002 classified greedy algorithms into three categories: 

1- Greedy: The initial solution is the empty set and then utterances that increase coverage the 

most (relative to solution at iteration) are added to the solution. This is until certain target 

coverage is achieved or a limit is reached. 

2- Spitting: The initial solution is the whole sentence set and then sentences that are least 

contributing to coverage are removed iteratively until a utterance removal would damage 

coverage in some way. 

3- Exchange: Starting from a specific solution (could be the output of one of the two methods 

above) exchange on of the solution’s utterances with one of the utterances excluded from 

the solution if this exchange increase coverage. Until no increase in coverage is possible. 

This maintains a static set size. 

François & Boëffard 2002 used diphone as their unit and did not mention prosody or stress in units. 

The criteria for the three different approaches above are simple. They used unit counts from each 

sentences to give a score. “Useful units” in a sentence being units that would contribute to the 

corpus coverage (taking into account the need to have multiple units with the same identity. 3 in 

their case) and “useless units” being the units that are redundant as the set already has a number of 

units with the same identity that equals or is higher than the limit (3 is the limit chosen in this work. 

See Table 1). They have used unit counts with the sentence cost (length) in different ways which 

they compared. They have shown that using “Spitting” after “Greedy” methods improves coverage 

cost (number of chosen sentences and their average length) but does not necessarily increase 

phonetic coverage. The way they combined the two methods is by running “Greedy” and then 

running “Spitting” restricting its choice of sentences to the output of “Greedy”. 

Table 1. Statistics of this work’s transcript before and after reduction. The chosen limit is 3 (blue). 

Minimum number of 

occurrences for each 

diphone 

1 2 3 4 

Number of utterances 468 700 884 1025 

Number of Words 5624 8982 11560 13479 

Recording length ~ 1.1 ~ 1.6 2.1 

(3.7 hours with nonsense 

sentences (see Section  2.3)) 

~ 2.5 

Since in this work the primary concern is coverage and not necessarily length of corpus, but the 

length of the generated speech (2 hours maximum for proper utterances), the “Spitting” method 

was chosen to reduce the transcript to a size that would potentially generate between 1.5 and 2.5 

hours of speech. In future work, a combination of the above methods could be used. 

To choose criteria for iteratively choosing utterances, we adopted a simple count where each 

utterance is scored by the following formula: 
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𝑈𝑆(𝑈, 𝐶) = ∑
𝑈𝑈𝐹𝑘(𝑈)

𝐶𝑈𝐹𝑘(𝐶)

𝑛

𝑘=0

         𝑖𝑓 𝐶𝑈𝐹𝑘(𝐶) > 𝑈𝑈𝐹𝑘(𝑈)  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 

𝑈𝑆(𝑈, 𝐶) =  −1                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Where 𝑈𝑆(𝑈, 𝐶) is the “Utterance Score” of the utterance 𝑈 relative to corpus 𝐶, 𝑈𝑈𝐹𝑘(𝑈) is the 

“Utterance Unit Frequency” which is the number of times a specific unit indexed by 𝑘 appears in 

the sentence 𝑈. 𝐶𝑈𝐹𝑘(𝐶) is the “Corpus Unit Frequency” which is the number of times a specific 

unit indexed by 𝑘 appears in the corpus 𝐶 at a certain stage of the optimisation. 

The optimisation process started from the initial solutions being the whole set of 2092 utterances 

and iteratively removed utterances which had the lowest 𝑈𝑆(𝑈, 𝐶), excluding utterances which 

have a score of -1. The processes stopped when removing any utterance would cause at least one 

phonetic unit to occur in the transcript less than the allowed limit. The allowed limit was a 

controlled parameter. 

In this work, diphones were used as basic phonetic units for optimisation. The reason for using 

diphones as the unit of choice is the fact it is the most used one in the literature reviewed (Kelly et 

al. 2006; Kominek & Black 2003; Barros & Möbius 2011; Bonafonte et al. 2008; Matoušek & 

Romportl 2007a) and the numbers of possible units for each phones, diphones and triphones (see 

Table 2) favour choosing diphones. Optimising using phones as units is trivial as there are only 82 

chosen for the optimisation (see Section  2.3) and phone optimisation is not ideal as it is well known 

that some co-articulation effects between phones spoken in sequence are not reproducible when 

using phone segments from different contexts, which in the case when phone optimisation is 

ignored. Triphone optimisation has been used in the literature (Matousek & Psutka 2001), But no 

coverage measure was given in this PhD work to compare against diphone optimisation. 

In this PhD work, 3 occurrences of each unit as a target is assumed and diphones are chosen as the 

target unit. Triphone optimisation was excluded as it means that there has to be at least 3 ∗

551368 = 1654104 triphone instances occurring in the corpus and this is too good to be true as 

the unit distribution always follows biased distributions in human generated transcripts. But 

assuming this prefect scenario, and in our target 12000 word corpus, every word should contain 

more than 100 unique and novel triphones. This is a very unrealistic constraint which is shown 

more clearly in Table 2 containing all the possible frequencies of each phone type and the 

corresponding value in the corpus before optimisation. 

Table 2. Theoretical Unit frequencies for different types of units 

Phones Diphones Triphones 

82 822 = 6724 823 = 551368 
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2.2 Optimisation Vocabulary 

Please refer to the “Arabic Phonology” appendix for more information about MSA phonemes used 

in this work. 

Not all diphones were included in the optimisation. The optimisation only included “short syllable 

diphones” and “half syllable diphones” (see Table 3). Both of these terms are used in this work for 

convenience and are not defined elsewhere. In this work, a short syllable is a syllable starting with 

a consonant (could be geminated) and ending with a vowel (could be long), and a half syllable is 

the second part of a syllable ending with a consonant (a vowel followed by a strictly non-geminated 

consonant). 

Table 3. Diphones included and excluded from optimisation. V means long vowel and C means 

geminated consonant. 

Short syllable diphones Half syllable diphones Excluded Diphones 

cv 

cV 

Cv 

CV 

Vc 

Vc 

Cc 

2.2.1 Short Syllable Diphones 

Some short syllable diphones were excluded for the following reason: Emphatic consonants cannot 

be followed by a non-emphatic diphthong or a non-emphatic /a/ or /a:/ which are (ا) and (َ ـ) in 

Arabicَscript correspondingly. This excludes 14 ∗  2 =  28 diphones of this form. 

The validity of these exclusions was only theoretical and based on rules of Arabic phonology 

before the recording (Watson 2007), but were found to be true in the talent’s speech, as the experts 

found during the correction phase, after the recording. The talent never emphasised a diphthong 

after a non-emphatic letter or vice versa. 

According to the above, theoretically, there are 56 ∗  10 =  560 possible short syllable diphones. 

56 represents the number of consonants doubled to include geminated consonants. 10 represents the 

number of vowels. This exclusion leaves 560 –  28 =  532 diphones included in the optimisation. 

2.2.2 Half Syllable Diphones 

The above short syllable diphone set, explained earlier, covers syllables of the form “cV”, “CV”, 

“cv” and “Cv”. But in case syllables of the form “cvc”, “Cvc”, “cVc” or “CVc” are to be 

synthesised by a concatenative speech synthesiser, which have a consonant coda (syllable ending) 
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that is not followed by a vowel (otherwise the coda would have belonged to the following syllable), 

it would be useful to have segments of the form “vc” or “Vc”, where the consonant (“c” part) is 

followed by a pause or another consonant rather than a vowel. This is because consonants which 

are followed by a vowel are highly co-articulated with the following vowel (Yi 2003) making them 

unfeasible to use for concatenatively creating syllables which end with a consonant as these are not 

followed by a vowel and hence should not include this co-articulation effect. Half syllable diphones 

of the form “vc” were added to the phonemic vocabulary. Table 4 shows how a concatenative 

speech synthesiser would hypothetically create each of the heavy and super heavy syllables ending 

with a consonant coda. It is important to note that for the diphones “vc”, the vowel in this diphone 

could either be a long or short vowel as their identity is merged just for the purpose of optimisation. 

This is because it is assumed that when concatenating “cv” and “vc” diphones to create a heavy or 

super heavy syllable, the length of the vowel in the syllable is determined by the vowel in the first 

syllable. 

Ignoring long vowels and geminated consonants in half syllable diphones (as explained above) 

leaves 6 vowels (one of which is emphatic) and 28 consonants (168 possible half syllable 

diphones). A further exclusion would be of diphones which are made up of a non-emphatic vowel 

/a/ followed by an emphatic consonant. This leaves the inclusion of 168 –  1 ∗  5 = 163 half 

syllable diphones. 

Table 4. How to generate heavy syllables from short and half syllable diphones. 

Short syllable Half syllable (the vowel 

corresponds to the vowel in 

the short syllable) 

Heavy and super-heavy 

syllable 

Cv vc or Vc  Cvc 

Cv vc or Vc Cvc 

cV vc or Vc cVc 

CV vc or Vc CVc 

This PhD work also included consonants at phrase endings (before a pause) as part of the phonemic 

vocabulary. Silence (represented as “sil” in this work) is considered a phone in its own right. This 

is to avoid any effect of co-articulation on the consonant being followed by another phone 

(consonant or vowel) and this consonant can be used at the end of phrases by concatenative speech 

synthesisers and the concatenation point would be the region of low amplitude before the 

consonant (Yuan et al. 2013). This adds 56 ∗  1 =  56 diphones in the optimisation. 56 is the 

number of consonant phonemes including geminated consonants. 1 is the pause (“sil”) phoneme. 

2.2.3 Consonant Clusters 

As for other types of diphones, consonant clusters, only two consecutive consonants allowed in 

MSA as described in Ali & Ali 2011 – which will be referred to as “cc” – were not included in the 

optimisation for three reasons: 
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1- “cc” diphones constitute a big part of Arabic diphones. Theoretically, there are 28 ∗  28 =

 784 possible “cc” diphones in Arabic out of 6724 total diphones. So being able to exclude 

them from the optimisation process, makes the possibility of reducing the dataset size 

higher and simplifies the problem. But the question is: How much would this damage the 

phonetic and prosodic coverage in the corpus? 

It is important to note that “Cc”, “cC” and “CC” diphones are not possible in MSA (could 

be in other dialects). This is because consonant cluster of more than 2 are forbidden. This 

further excludes 3 ∗  28 ∗  28 =  2352 diphones from the total 6724. 

2- The 784 theoretically possible “cc” diphones are not all occurring in Arabic (not including 

foreign imported words. 246 “cc” diphones are either non-occurring or very rare in Arabic 

(John Alderete 2009). The study that these numbers were taken from does not state 

specifically which “cc” diphones these are, but states to which consonant classes 

(articulation type) each of the consonants in the diphone belongs. So it is safe to assume 

that many of these clusters will not be found in the corpus transcript used for this work 

before optimisation. 

3- Yi, Jon Rong-Wei 2003 show how certain concatenation points between specific types of 

phones are better than others and would generate natural sounding speech when used in 

concatenative synthesisers. One of these, is the very brief period of silence and gathering of 

pressure before the release of a stop letter and other consonants which involve the same 

phenomena on a different scale (Tench 2015; Yi 2003). This could make it possible to 

construct those consonant clusters from smaller units by concatenating at the low 

amplitude region before the consonant. It has been noticed after the recording that the 

region of low amplitude is clear before stop consonants and less significant before other 

consonants. To try to alleviate this issue, a consonant from each of the articulation 

categories was chosen and for each an utterance from the recordings selected. The low 

amplitude before these consonants was further de-amplified (dimmed) and no effect to 

naturalness was noticed by the experts. Subjective testing will be conducted later to further 

justify this finding. The de-amplification of the low amplitude period shows that these 

points can be used as concatenation even when the consonant is not a stop. 

2.3 Results 

Table 5 lists results based on all the 163 +  532 + 56 =  751 diphones that were included in the 

optimisation. For more detailed results please refer to Halabi (2015). After running the optimisation 

script, 884 utterances were left in the data set out of the complete 2092. The optimisation process 

was run through several times with the threshold for the allowed minimum number of diphone 

occurrences changed. The threshold 3 was chosen because of resource limitations (15 hours 
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recording studio time and talent time) and more utterances were planned for recording in case extra 

studio time was left (see Table 1). 

It is important to note here that even with the threshold chosen at 3, this does not guarantee that all 

diphones have occurred at least 3 times in the optimised corpus. Diphones that occur less than the 

chosen threshold – before the optimisation started – were not included in the optimisation process 

and any utterance that includes them is never excluded. 

To cover the gap of these underrepresented diphones, 896 nonsense utterances were recorded. 

Nonsense utterances have been used before in the literature to study language phonetics (including 

Arabic) (John Alderete 2009; Kain et al. 2007; Laufer & Baer 1988). The benefit of using them is 

being able to cover many units with less material but a talent may find them more difficult to 

pronounce and this could potentially slow the recording time and cause more errors in the final 

recording output. This is also because of the absence of syntax which makes the prosody of the 

generated utterances potentially random. The nonsense utterances used here are experimental and 

after recording them, the talent did express that they were more difficult than news transcripts, but 

the fact that they were generated by a template made the effort easier as the talent recorded more of 

them as they were similar in length and orthographic structure and utterances from the same 

template were grouped together on the prompt shown to the talent. The nonsense utterances were 

automatically generated using 4 templates (The sections between brackets are replaced by a short 

syllable diphone to generate a nonsense utterance and underlines represent stress. Some stress 

depends on the diphone which is not shown): 

1- /(cv)Sbara wata(cv)S~ara watu(cv)SA(c)un taSar~u(cv)/ 

2- /(cv)sbara wata(cv)s~ara wati(cv)sU(c)in tasar~u(cv)/ 

3- /ta(Cv)Saw~ara wata(Cv)Sara watu(Cv)Sa taSa(Cv)/ 

4- /ta(Cv)saw~ara wata(Cv)sara watu(Cv)sa tasi(Cv)/ 

Templates 1 and 3 guarantee that all short syllable diphones with emphatic vowels are included, 

and templates 3 and 4 guarantee that all short syllable diphones with geminated consonants “C” are 

included, and sentences 1 and 2 mild /u1/ and /i1/ short syllable diphone are included. All the 

templates repeat the same diphone in different locations in the word to include stressed and non- 

stressed diphones. Note here that the replacement is only done orthographically. The eight vowels 

in Arabic, the 28 consonants and the 28 geminated consonants were used to replace “v”, “c” and 

“C” respectively. But those vowels (including in diphthongs) are uttered emphatically or non-

emphatically depending on the context in the template. This generated a total of 28 ∗ 8 ∗ 4 = 896 

nonsense utterances that cover all the short syllable diphones (four times each at least) with 

different stress. Half syllable diphones were not included as this would have doubled the amount of 

recoding required. 
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It is suggested that future work could add emphatic, non-emphatic, stressed and non-stressed 

vowels (a stressed vowel being a vowel in a stressed syllable) as separate phonemes in the 

optimisation process. This would require much more data as shown in the results. 

Table 5. Coverage statistics for different parts of the transcript. 

Part Aljazeera before 

optimisation 

Aljazeera after 

optimisation and 

normalisation 

Nonsense 

utterances 

Aljazeera after 

optimisation with 

nonsense utterances 

Number of diphones 

covered at least once 

561 544 547 669 

Percentage of diphones 

covered at least once 

74.70 72.44 72.84 89.08  

Number of diphones 

covered at least three 

times 

492 476 545 646 

Percentage of diphones 

covered at least three 

times 

65.51 63.38 72.57 86.02 

 

Finally, the short and half syllable diphones left a total of 896 + 884 = 1780 utterances for the 

recording (see Section  2.4 for more information on the recording and error correction procedures). 

The coverage of these utterances is shown in Table 5 for each of the nonsense utterances and the 

news transcript and both combined. Table 6 shows the complete set of phonemes used in this work 

excluding geminated consonants which are represented by doubling the consonant phoneme’s 

symbol. The symbols on the right of the columns will be used to refer to phonemes henceforth. 

Table 6. Final Phoneme set (82 in total). Note that geminated consonants are not included in the 

table for simplicity purposes. The left hand column in each section represents the 

phoneme in Arabic script and the right hand column is the Buckwalter representation. 

 i1 [ـ َ] u0 ـ َ y ي g غ r ر > أ

 uu1 [و] i0 ـ َ v ڤ f ف z ز B ب

 ii1 [ي] AA (ا) p پ q ق s س T ت

 U1 )[ـ َ]( UU0 (و) G ج k ك $ ش ^ ث

 I1 )[ـ َ]( II0 (ي) J (d͡ʒ) ج l ل S ص j (ʒ) ج

 UU1 ([و]) A )ـ ( aa ا m م D ض H ح

 II1 ([ي]) U0 (ـ َ) uu0 و n ن T ط X خ

 I0 pause sil (ـ َ) ii0 ي h ه Z ظ D د

 u1 distortion dist [ـ َ] a ـ َ w و E ع * ذ

Green means: Only in foreign words used in Arabic like فيديو 

Blue means: Vowels 

Black means: Consonants 
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2.4 Recording Utterances 

The recording of the corpus was spread over 5 days. Each day involved a 3 to 4 hour session 

including one or two breaks to avoid straining the talent’s voice. This is the same time as reported 

by Matoušek & Romportl 2007b and two hours more than Oliveira et al. 2008. The fifth recording 

day was used to go through the recordings and rerecord unreliable utterances. A sound engineer, 

the voice talent and at least one expert were always present during the recording. The experts 

provided feedback to the talent about speed, emotion, loudness and pitch consistency and errors in 

pronunciation. The sound engineer started each session with a sound check to test if the talent was 

within an acceptable distance from the microphone for human voice recording and to produce 

recordings with consistent loudness. Loudness and speed were less of an issue as long as the talent 

spoke within a comfortable range set by the sound engineer. The sound engineer was able to 

change the speed and intensity (loudness) of recordings based on the experts’ opinion and the 

readings from the software used (Pro Tools 11) without affecting the naturalness of the recordings. 

The sound engineer also played recordings from previous sessions to the talent at the start of each 

session and when the experts felt that the talent was deviating from the acceptable ranges described 

above. The talent was a native Arabic speaker and recordings were repeated on request if he felt it 

wasn’t suitable for our purpose. 

The recording was done in a studio. The microphone used was “Neumann TLM 103 Studio 

Microphone” known to be used for high quality human speech recordings.  It had a pop shield to 

reduce the sound impact of exhaled air on the microphone. The talent sat in a soundproof anechoic 

recording booth. The booth only contained a prompt screen and the microphone. After the 

recording was finished, the sound engineer went through the whole recording in order to perform 

the following edits: 

1- Adding short silences at the beginnings and ends of utterances. This is needed to give each 

recorded phone a context (a preceding and trailing phone) as pauses are modelled as 

phones in HMM forced alignment, which is used later. 

2- Preforming “Dynamic Range compression” for the intensity (loudness) of all the 

utterances. This is used to make intensity as uniform as possible with a dynamic gain that 

is multiplied by the signal to keep the signal within a set limit. -12 db (Decibels) was 

chosen by the sound engineer but it is possible to re-export the output with different limits. 

3- Reduce the length of speech pauses that are too long. No specific length was agreed but the 

sound engineer was given feedback about long pauses to reduce them which keeps 

acceptable variability in pause length without jeopardising the automatic alignment whose 

precision might be affected by long pauses. 

4- Normalise speed (change utterance’s’ speed each separately to a predefined speed). 



 

26 

The sound engineer was also given feedback after the second error correction phase about the 

errors still in position, in order to fix them and redeliver the recordings. The errors included only 

clipped phones next to pauses, unreliable edits (recording radically different from transcript) and 

speed inconsistencies. 

The recordings were delivered in separate files for each utterance (1780 files in total with 33 extra 

utterance because of residual studio time) which correspond to 17040 words overall after transcript 

corrections. 896 of the utterances correspond to the sentences that were automatically generated. 

The rest correspond to the optimised automatically chosen utterances from Aljazeera Learn 

(Aljazeera 2015) (see Section  1.3.1). Each utterance starts and ends with a short pause (about 

100ms). The speech was not delivered in one large file as it is known that sequence models align 

shorter utterances more accurately than longer ones (Moreno et al. 1998). But still, having 

utterances with different length is usually considered a goal as it may enrich the prosodic coverage 

of the corpus (Umbert et al. 2006; Vetulani 2011). This corpus’s utterance statistics are shown in 

Table 7. It is not claimed here that these statistics are optimal. The lack of diacritised Arabic text 

constrained the choice of utterances and the optimising utterance length distribution is not covered 

in this work. 

Table 7. Recording Statistics. 

 Total Utterances Nonsense Utterances Proper Utterances 

Count 1780 896 884 

Average duration (sec) 7.481522 5.915011 9.046307 

Mode duration (sec) 5 5 5 

Max duration (sec) 36 8 36 

Min duration (sec) 1 3 1 

Total Duration (hours) 3.7 1.5 2.1 

After the recording sessions were over, two experts went through the corpus in sequence (for more 

scrutiny) to correct orthographic errors in the transcript and to change the transcript so that it 

reflected what was actually pronounced by the talent. All punctuation was removed and a special 

symbol was used to represent a pause in this phase. Most pauses were easy to detect as they were 

long enough (over 0.3 seconds). Due to some pauses or errors being hard to detect in normal speed, 

the speed of the recordings was slowed down in this correction phase. Even with the speed reduced, 

it was hard to detect some hesitations in word boundaries and to decide whether to classify them as 

a pause or not. The decision was made to classify as a pause, any word boundary that could be 

pronounced more naturally if the two phones surrounding the boundary were uttered closer to each 

other. This is justified by the fact that if these two phones are not naturally following each other, 

the pause mark would tell the synthesis system that these two phones do not naturally follow and 

their concatenation (in case of concatenative speech synthesis) would be give a high cost (less 

likely to be chosen) (Yi 2003). 
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Later, in the phonetic “manual corrections” phase (see Section  3.4), experts were allowed to 

remove or add pauses that were incorrectly added or missed in the transcript. In this phase, it is 

easier to classify a segment as a pause or not, because the signal’s spectrum and amplitude is 

visible to the expert.  
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Chapter 3: Corpus Segmentation and alignment 

The terms segmentation and alignment are used interchangeably in the literature to describe the 

general processes of annotating a speech corpus with phone labels and finding the timestamps of 

the boundaries that delimit those phones. This could involve annotating pauses and stress 

(Braunschweiler 2006). 

In this work, the term segmentation will be used to refer to annotation of the speech corpus with a 

sequence of phone labels taken from the phonetic transcript of this corpus which is in turn 

automatically generated from the textual transcript as described (see Section  3.1). Segmentation 

also involves finding boundaries that surround these phone labels. The timestamps of these 

boundaries do not have to be 100% accurate (or anywhere close to that) in segmentation, just the 

sequence of phone labels should match what is in the audio. Both the creation of the phonetic 

transcript from the textual transcript and the segmentation of the corpus are done automatically in 

this work. The former has been completed by an algorithm developed in this work and the latter 

using HMMs built using the Hidden Markov Model Toolkit (HTK) framework (Young et al. 1997). 

Alignment here is the determination of the exact timestamps of the phone boundaries. This could 

be done either automatically (using boundary refinement techniques for example or HMM models 

as described above) or manually by a group of experts whose job it is to correct the boundaries 

generated from the segmentation (or they could perform segmentation and then alignment manually 

which is known to be very time consuming). Note that the segmentation process could produce 

high precision alignments as shown in previous works (Hosom 2009). This depends on the quality 

of the recording, speech, text transcript, phonetic transcript and the algorithm used for 

segmentation (and alignment in this case). 

To assess the necessity of experts aligning the corpus manually, the experts manually corrected a 

portion of the corpus. This correction was used to assess the quality of the automatic segmentation, 

the experts’ agreement and also the quality of any further alignments carried out using the same 

algorithm with different parameters or using the manually aligned data to bootstrap the automatic 

segmentation process. 

In this work, the size of the corpus created exceeds 3 hours of speech. To avoid manual 

segmentation of the corpus, forced alignment (Murphy 2012) was used in different modes to create 

an initial segmentation of the corpus (see Section  3.3). This was carried out after the corpus 

transcript was revised twice by the experts, so at this stage, the corpus transcript had to be 

converted into a phonetic transcript to be used for segmentation and alignment. The following is a 

summary of the steps of the segmentation and alignment process: 
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1- Generating the phonetic transcript: Text transcript is automatically converted 

to a phonetic transcript which includes phonemes from Table 6. In this PhD 

work, the phonetic transcript was in the form of a pronunciation dictionary 

because the software used for alignment requires a pronunciation dictionary as 

input with the textual transcript. 

The dictionary contained several possible pronunciations of each word in the 

textual transcript. 

2- Automatic Segmentation: The phonetic transcript and the speech corpus audio 

are used as input to forced alignment which produces the segmentation with 

initial boundaries. 

3- Manual corrections: Three experts go through a portion of the segmented 

corpus to correctly align the boundaries with the speech. This could be 

repeated iteratively where in each iteration the corpus is automatically 

realigned after the system is trained on the manually aligned data (some left for 

evaluation) and then the precision of this alignment is calculated to determine 

if an acceptable precision has been reached or if precision is not increasing 

anymore with more iterations. 

3.1 Generating the phonetic transcript 

This was done automatically using a set of rules taken from classical Arabic orthography rules 

(Elshafei 1991; Thelwall & Sa’Adeddin 2009; Watson 2007; Ali & Ali 2011; Gadoua 2000; de 

Jong & Zawaydeh 1999; Halpern 2009); the nature of the text transcript harvested from the web 

and the dialect of the speech talent (Levantine from Damascus). The experts have noticed that 

different segments of the text taken from different articles applied different rules for orthography. 

This was dealt with by iteratively creating a list of all these rules. During the text transcript’s error 

correction stage (see Section  1.3.1), the experts discussed and assembled what they found and 

added a list of rules as they corrected the script. The complete list of rules for generating the 

phonetic transcript is as follows: 

1- All characters that are not Modern Standard Arabic letters or diacritics are omitted. Even 

Arabic letters in classical Arabic that are no longer used need to be omitted. Letters to be 

excluded are shown in the table below (see Table 8). 

Table 8. Classical Arabic characters excluded from the transcript. 

Description Unicode Arabic Script 

Arabic Tatweel U+0640 ۔ 

Subscript Alif U+0656 َ  ٖ  

Superscript Alif U+0670 َ ٖ  

Alif Wasla U+0671 ٱ 
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All punctuation characters are also omitted. This is because the experts located the pause 

locations during the manual correction of the textual transcript (see Section  1.3.1). This 

renders the punctuation characters useless as the locations of pauses are already known. 

But it is important to note that the punctuation could be used later for prosodic feature 

extraction as the prosodic features of utterances correspond strongly with punctuation 

(Taylor 2009). 

2- Arabic orthography is described as a phonemic orthography (sometimes Arabic script and 

alphabet are called “phonetic”, having the same meaning) and the correspondence between 

letters and phones has been studied in the literature (Watson 2007; Elshafei 1991; Newman 

1986) this allows one to think of Arabic letters as phonemes. However, as will be shown, 

this is not always the case. Arabic symbols (letters and diacritics in this case) usually 

correspond to phonemes in a regular manner. Unlike English spelling where – for example 

– the word “enough” has combinations of letters that offer different possible 

pronunciations from “enouw” where the “ough” combination is said as in the “bough” of a 

tree to “enoch” with the “ou” as in “though” and the “gh” as in a Scottish loch and yet the 

word is pronounced as “enuf”. Similar but rarer instances of this phenomenon exist in 

Arabic. Arabic (including MSA) includes a set of words (nouns and function words) which 

have an implicit “Alif” vowel (or “ا” in Arabic orthography) which is not written and 

corresponds to the /aa/ vowel phone in table (see Table 9). This set of words is small and 

unchanging. The system uses a table lookup method to resolve those words when they are 

encountered where the phonemic transcriptions of each of these words is predetermined by 

the experts. Note that these words could be affixed or suffixed but their pronunciation stays 

the same. 

Table 9. Irregularly pronounced words in Arabic. 

Arabic word Pronunciation Arabic word Pronunciation 

مَ  /h aa TH aa/ ه ذا ل ك   /TH aa l i0 k u1 m/ ذ 

هَ   /AH u l aa AH i0 k a/ أول ئ كَ  /h aa TH i0 h i0/ ه ذ 

 /T aa h a/ ط ه َ /h aa TH aa n i0/ ه ذانَ 

لاءَ   /l aa k i1 n/ ل ك نَ  /h aa AH u0 l aa AH i0/ ه ؤ 

ل كَ  نَ  /TH aa l i0 k a/ ذ  م  ح   /r a H m aa n/ ر 

ذل كَ   /l AA h/ لله /k a TH aa l i0 k a/ ك 

 

3- Manually annotated silences were represented by the phone /sil/ in the phonetic transcript. 

4- All consonant letters except Waw and Ya’ (“و” and “ي” correspondingly) are simply 

converted to their phonetic representation without ambiguity (see table). An exception is 

when the consonant is followed by a Shadda or (َ ـ), then it is represented by a doubling of 

the consonant’s phonetic representation. For example, /b/ for “ب” becomes /bb/َfor “  .”بَ 

5- Ta’ marboota or “ة” is converted to “t” if followed by a diacritic, otherwise it is ignored. 
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6- Madda or “آ” is converted to a glottal stop /</ followed by /aa/ or /AA/ long vowels based 

on the amount of emphasis. 

7- Vowels are emphasised if they follow or precede an emphatic consonant with exception of 

/x/ and /g/ (“خ” and “غ”) which only affect following vowels and not preceding ones. 

Emphasis is represented by capitalising the vowel’s phonetic transcription’s representation 

(see table). 

8- Short vowels /i/ and /u/ corresponding to diacritics (َ ـ) and ) ـ( have – in addition to the 

possibility of being emphasised – the possibility of being leaned towards /a/ or (َ ـ). This 

means that the pronunciation of the /i/ or /u/ will be closer to a Schwa. The phenomena is 

not documented anywhere and was noticed by the experts after recording the corpus. The 

talent leaned towards /i/ and /u/ when they preceded a word-ending consonant which is not 

followed by a short vowel. In the phonetic transcription this is represented by the numbers 

0 and 1. 0 meaning “not leaned” and 1 meaning “leaned”. For example, the /i/ in the word 

“ ر بَ  غ   which means “west” or “morocco” (which pronounced as /m a g r i1 b/) is ”م 

phonetically represented as /i1/. (See Table 6). 

9- Waw and Ya’ (“و” and “ي”) are transcribed phonetically as either vowels or consonants. 

This is determined by their context. If followed by a vowel, they are identified as 

consonants. If followed by a consonant then the preceding phone determines their identity, 

if preceded by a vowel, they are consonants, otherwise vowels. 

10- Alif (“ا”) is transcribed as a vowel /aa/ or /AA/ depending on emphasis. An exception is a 

type of Alif called Hamzat Alwasel which is not pronounced in Arabic (including MSA). 

Also, Hamzat Alwasel becomes a glottal stop /</ at the beginning of sentences or phrases 

(after silences). Alif is realised as a Hamzat Alwasel when it is the first letter in the word or 

the second (after an affix). 

The phonetic transcription produced was in the form of a pronunciation dictionary similar to the 

ones used in speech recognition systems for example HTK and Sphinx (Young et al. 1997; Lamere 

et al. 2003). The dictionary is a long list of orthographic representations of words each followed by 

their corresponding phonetic transcript. Note that multiple repetitions of the same orthographic 

representation can occur showing different possible pronunciations. “Hamazt Alwasel” in rule 10 

when not in the beginning of the word is ambiguous and could be pronounced or not. Both 

pronunciations were added to the dictionary to be resolved in the forced alignment stage as HTK 

will choose the most probable sequence of phonemes that generated the speech signal. Other 

instances of ambiguity are Alif “ا” after Waw “و” at the end of a word. Here the Alif is not 

pronounced if the Waw is a plural Waw which is difficult to automatically determine with high 

precision (as in foreign words transliterated into Arabic). For example, the word “Nicaragua” is 

written “نيكاراغوا” in Arabic and the final Alif represents a long vowel phoneme /aa/. Both possible 

pronunciations for each word ending with a Waw followed by an Alif were included. Word-ending 

long vowels were also optionally shortened in the pronunciation dictionary due to the phenomena 
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of vowel reduction (de Jong & Zawaydeh 1999; Biadsy & Hirschberg 2009) which was noticed in 

this corpus as well. 

3.2 Automatic Segmentation 

The automatic segmentation was done using flat start forced alignment in a similar way to the 

method described in the “HTKBook” (Young et al. 1997). HTK version 3.4.1 was used which was 

the most recent version at the time the segmentation was conducted. HTK contains several tools to 

perform tasks such as extracting acoustic features like the Mel Frequency Cepstral Coefficents 

(MFCCs)  (see the “Acoustic Features” appendix for more information about MFCC) from the raw 

speech signal; constructing (training) HMM models (HCompV, HRest and HERest) from aligned 

and non-aligned data (the former being flat start training); using previously trained HMM models 

to align new data with the transcript using Viterbi decoding (Murphy 2012) (HVite); and 

performing other text processing tools (HHEd, HCopy…). These tools were built mainly for speech 

signals but HTK has been used for other purposes. For more depth on what exactly each of these 

tools do, please refer to the HTK book (Young et al. 1997). 

Because of the complexity of the HTK training scheme, which is due to the fact that it requires 

manual manipulation of the text files between stages of training and alignment; and the complexity 

of HTK’s syntax used to write the HMM topology, a python wrapper was used to script the 

different stages and tasks. Another motivation for using and enhancing this wrapper was the fact 

that the training and alignment were conducted several times due to changes in parameter values 

and errors found in the results that required some alteration to the data. The wrapper used is called 

Prosodylab-Aligner (Gorman et al. 2011) developed by the Department of Linguistics, McGill 

University. The aligner contained two main features before modification in this work, HTK’s flat 

start training scheme (that generates and HMM model and also aligns the training data) and 

alignment using previously trained models. Flat start training is a term commonly used in the 

literature when the initial training stage is not done with manually labelled data and the input 

utterances are uniformly segmented. For example, an utterance that is 10 seconds long with 100 

labels would be split into 100 segments each being 100 milliseconds long. Flat start trained HMMs 

usually produces less accurate alignment than aligning using HMMs trained with manually aligned 

data (D. R. Van Niekerk 2009; Brognaux et al. 2012) but this was used in this case as an initial 

alignment for the experts to start from when creating the manual alignments. 

In this work, a third feature was added to the python wrapper which is to bootstrap (train) the 

HMM models using previously aligned data (data with timestamps of phone boundaries). All three 

features in the wrapper were modified to optionally allow different HMM topologies for different 

phones (it is possible to use a default topology for all phones). The three features were used in the 

following general stages: 
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1- HTK alignment: The output phonetic transcription system as described in Section  3.1 along 

with the raw audio is input to the python wrapper which in turn uses the HTK flat-start 

training scheme to generate the automatic alignments of the corpus. 

2- Manual corrections: The output alignments are given to the linguistic experts for manual 

inspection and correction. The correction involves adjusting the boundaries of phones and 

correcting false phone labels, deleting labels for phones that did not exist in speech or 

adding labels for phones that were missed by the phonetic transcriber. The corrected 

alignments are used to calculate the precision of the automatic alignment of the different 

runs of stage 1 (with different parameters). 

3- HTK bootstrapping: The output of stage 2 is used for further refining the automatic 

alignments by bootstrapping the training with manually corrected boundaries. This could 

be done iteratively until an acceptable precision is reached. 

4- Boundary Refinement: Optionally, before or after stage 3 (or both) a novel approach to 

boundary refinement was performed. It was inspired by the results of the evolution of the 

first stage (see table). The results show strong tendencies of certain predicted boundaries of 

predominant boundary types to deviate from the correct boundary location by a regular 

interval (delta) both by magnitude and direction. For example, boundaries between vowels 

and consonants (v/c boundaries) have shown to have, over 80% of the time (only counting 

boundaries that were moved by the experts), a negative delta with an average delta of -

0.01615 seconds. 

The following is a more detailed description of the two first stages. Note that text processing done 

between those stages is not described here because it is redundant. Please see code for more details 

(Halabi 2015). 

3.3 HTK Alignment 

After calculating the MFCC acoustic features of the raw audio signal using HCopy, HCompV is 

used to calculate the initial means and variances of the Gaussians, whose mix makes up the 

observation probability distributions  (Ghahramani 2001). These means and variances are the same 

for all phone models initially and is the global mean and covariance for all the data points (all 

frames for the audio signals). HCompV also generates Variance Floors (VFloors) which are lower 

bounds for the variances that can be used later to prevent over fitting by prohibiting the variance 

from going below those values at each training iteration. By default, the variance floors are just 

taken to be 0.01 times the global variance which was used in this work. Note that there are other 

ways of calculating variance floors that are not included in HTK (Young et al. 1997) and are not 

covered in this work. 
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The global means and variances generated by HCompV, alongside a default initial transition matrix 

are used to create the initial HMM definition. This is similar to HTK’s initial model state and can 

be seen in Young et al. 1997. 

The generated initial HMM models are then used iteratively as input to HRest. HRest updates the 

means and variances discussed above and also the transition matrixes of HMM states. HRest uses 

the Baum-Welch algorithm (Jurafsky & Martin 2008) which is based on the more general 

Expectation Maximisation (EM) method for probabilistic model parameter estimation when the 

probabilistic model contains hidden variables like in HMM. In EM, the goal is to maximise the data 

log-likelihood function which is given by: 

𝐿(𝜃) = ∑ 𝑃(𝑋𝑖 , 𝑍𝑖|𝜃)

𝑁

𝑖=0

 

where 𝑋𝑖 are the observed variables, 𝑍𝑖 are the hidden variables, 𝜃 generally represents the model 

parameters and 𝑁 is the number of data entries in the dataset. 

Since no values for the hidden variables are known during training, the current estimates of the 

HMM parameters are used to find the expectation of the log-likelihood function which is given by: 

𝑄(𝜃, 𝜃𝑡−1) = E[L(𝜃)|𝒟, 𝜃𝑡−1] 

where 𝒟 is the dataset and 𝜃𝑡−1 is the current estimate of the model parameters. 

Then the function 𝑄(𝜃, 𝜃𝑡−1) is itself maximised with respect to 𝜃 which yields the new estimate 

of the model parameters 𝜃𝑡 as shown here: 

𝜃𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑄(𝜃, 𝜃𝑡−1) 

The same is repeated for either a predefined number of times or if it reaches convergence. It can be 

shown that each iteration of the EM algorithm will either increase the value of the log-likelihood 

function or keep it the same for new estimates of the parameters 𝜃. The monotonic increase of the 

above log-likelihood function at each iteration in the EM algorithm has been proven (Murphy 

2012). 

In the HTK implementation of Baum-Welch (EM algorithm) the number of epochs (iterations) is 

adjustable and different numbers were used to test precision increase. 

After HRest has finished optimising the parameters of the phone models, HVite is used to generate 

the final alignment using the Viterbi algorithm (Murphy 2012) which is a dynamic programming 

method that finds the most probable sequence of states (hidden variables) that generate the 

observed variables in an HMM. 
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After one third of the iterations have elapsed, the aligner adds optional “pause” models between 

words in the script. HTK chooses the most probable pronunciation – given the HMM, the 

pronunciation dictionary and the silence (pause) models – which finally includes the boundaries 

and the detected pauses. This is done using finite state word networks that model all the possible 

pronunciations of the utterances (Young et al. 1997). These networks are built from the 

pronunciation dictionary which contains possible multiple pronunciations of the same word. This 

work’s phonetic transcription system (see Section  3.1) deals with ambiguous pronunciations of 

words by adding multiple entries in the output pronunciation dictionary. For more on using finite 

state networks for multiple pronunciations in speech recognition refer to Pereira & Riley (1996) 

and  Young et al. (1997). 

3.4 Manual corrections 

According to Yuan et al. (2013), segmenting and aligning speech given only the phonetic transcript 

and raw audio with no initial segmentation could require as much as 400 times the audio time to 

finish with acceptable precision. This means that every minute of speech would take over 6.5 hours 

to segment. Segmenting and aligning the whole corpus produced (which is 3.5 hours long) would 

require around 1400 hours of work. As has already been noted there is a considerable amount of 

emphasis on the difficulty of segmentation and alignment in the literature (Van Bael et al. 2007; 

Malfrère et al. 2003; Mporas et al. 2009). 

The alignments produced at stage 1 were used to decrease this time required. It is assumed here that 

correcting automatic segmentation and alignments is quicker than creating them from scratch. This 

manual correction stage has been done in previous work and is usually recommended for speech 

synthesis corpora (Peddinti & Prahallad 2011; Jakovljević et al. 2012; Black 2002) but it suffers 

from: 

1- The huge efforts required to segment and align a medium sized corpus, of for instance 3-4 

hours, for speech synthesis. The suggested solution in this work is an iterative method 

where experts correct small parts of the corpus, which are then used to realign the corpus 

automatically after bootstrapping with manually corrected data. This is done iteratively 

with accuracy calculated at every step to check if improved precision can be obtained 

without manually correcting the entire corpus. 

2- Requiring a team of qualified linguists with good knowledge of the target language’s 

phonetics and training them on the conventions, phone sets, boundary types, potential 

errors and the software used for correction. Three 3-hour sessions were conducted before 

the segmentation and alignment tasks were distributed to train the experts. The experts kept 

in contact throughout the alignment to report common errors and to send enquiries. 
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3- Inter-expert agreement. This is due to the subjective nature of some phone boundaries or 

phone boundary types (Yi 2003). To solve this issue, each utterance was corrected at least 

twice by a minimum of two different experts. This helps in two ways. One is calculating 

inter-expert agreement which a measure of how close the expert’s corrections were to each 

other (see Section  4.4.2). The other is to increase the precision of the alignment with more 

experts analysing the same set of utterances. 

Each expert was given batches of 50 utterances per iterationand then the experts exchanged the 

utterances for the second correction. The software used for the correction of the boundaries was 

Praat (Boersma & Weenink 2015) which accepts a file format that Prosodylab-Aligner is able to 

generate. Praat was chosen as it was the only freely available tool for this purpose at the time of the 

experiment. Figure 3 shows the interface of Praat used by the experts. Tier 1 contains the phone 

labels and boundaries to be corrected by simple keyboard and mouse actions. Tier 2 contains the 

Buckwalter representation of words in the original transcripts. These were not to be changed by the 

experts. 

 

Figure 3. Praat interface. 
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Chapter 4: Segmentation and Alignment Evaluation 

4.1 Evaluation metrics 

To measure precision, the percentages of boundaries found by the system within a controlled 

distance from the correct boundary were calculated. This is the agreed on metric in the literature 

(Hosom 2009; Yuan et al. 2013; Mporas et al. 2009; Jakovljević et al. 2012). In most attempts, this 

percentage is used on all boundaries combined (Jakovljević et al. 2012; Yuan et al. 2013; 

Hoffmann & Pfister 2010) (with some boundary types excluded sometimes (Jarifi et al. 2008; 

Stolcke et al. 2014)). Some attempts calculated the precision for different boundary types 

separately (Hosom 2009). This inspired the inclusion of boundary types in this work, as this had 

not previously been done for MSA. The distances are all a multiple of 5 milliseconds. These 

distances are referred to sometimes as the tolerance 𝑇 and the percentage of boundaries within a 

tolerance will be referred to as the precision for that tolerance 𝑃𝑇,𝐵 where 𝐵 is the boundary type. 

In addition, the average absolute value of delta 𝐷 (absolute value of boundary shift caused by the 

experts’ corrections), the number of positive and negative deltas and the standard deviation of the 

deltas are calculated for each boundary type. The following are the calculated values and metrics in 

more detail: 

Table 10. Metrics used in evaluating segmentation (in red). 

Value or Metric Symbol Formula 

Tolerance 𝑇 - 

Number of boundaries of type 𝐵 𝑁𝐵 - 

Number of boundaries of type 𝐵 Within Tolerance 𝑇 𝑁𝑇,𝐵 - 

Precision 
𝑃𝑇,𝐵 

𝑁𝑇,𝐵

𝑁𝐵
∗ 100 

Predicted time stamp of boundary 𝑏 𝑡𝑝(𝑏) - 

Expert corrected time stamp of boundary 𝑏 𝑡𝑐(𝑏) - 

Delta 𝐷(𝑏) 𝑡𝑝(𝑑) − 𝑡𝑐(𝑑) 

Number of positive deltas for boundaries of type 𝐵 𝐷𝐵
+ - 

Number of negative Deltas for boundaries of type 𝐵 𝐷𝐵
− - 

Average Delta for boundaries of type 𝐵 

𝐷𝐵
∗  ∑

D(b)

N𝐵
𝑏∈𝐵

 

Standard deviation of Delta for boundaries of type 𝐵 
𝐷𝐵

𝜎 

 
√

∑ (D(b) − 𝐷𝐵
∗ )2

𝑏∈𝐵

𝐷𝐵
#

 

Metrics in red (see Table 10) are the metrics used to assess segmentations. They were used to find 

which types of boundaries were most incorrectly predicted by the system or identify 

misunderstandings between the experts. Symbols in column 2 are sometimes used in the rest of this 

work for convenience. As stated above, the 𝑃𝑇,𝐵 metric is not novel and is the metric used in the 

literature to evaluate segmentation precision. The five other metrics (D𝐵
# , 𝐷𝐵

+, 𝐷𝐵
−, 𝐷𝐵

∗ , 𝐷𝐵
𝜎) are 



 

39 

novel, and as future work, could also be used for boundary refinement (they are called shift metrics 

in this work). 

Table 11. Insertion, deletion and update metrics. 

Value or Metric  Symbol 

Number of boundaries added 𝐵+ 

Number of boundaries deleted 𝐵− 

Number of phone labels changed 𝐿𝑐 

Table 11 shows three other metrics for assessing expert performance in alignment. Even though the 

textual transcript was corrected before generating the phonetic transcript and aligning, the experts 

were not only required to correct boundary locations but also add missing boundaries,  remove 

unnecessary ones and correct phone labels that do not match the speech. 

There are several reasons why there could still be errors in the phonetic transcript after manual 

revision: 

1- Experts did not detect an error in the first stage of text correction or in second stage when 

matching text with recorded speech. 

2- The phonetic transcript generated automatically could contain errors as some parts of the 

algorithm are non-deterministic and generate multiple possible pronunciations of the same 

word. HTK’s forced alignment would need then to choose the best possible pronunciation 

for each word and this did not result in matching phonetic sequences in all cases. This was 

sometimes due to the talent pronouncing letters with some imperfections which makes the 

identity of the phone disputed. An example of these imperfections would be emphasising a 

vowel in a non-emphatic context or visa-versa. 

3- Some words were not pronounced according to the rules found in this work for automatic 

phonetic transcription (see Section  3.1). This includes foreign words that are written in 

Arabic but pronounced using phones that may not be part of the Arabic’s (or MSA’s) 

phonetic vocabulary (see Table 6. Final Phoneme set (82 in total). Note that geminated 

consonants are not included in the table for simplicity purposes.). The pronunciations of 

these words had to be entered manually by the experts. 

4- The experts were given the option to add a distortion label (see Table 6) to segments where 

pronunciations were not clear. 

It is important to note that all the causes listed above were found after correcting the first three 

batches of utterances (150 utterances with 50 each). Any systematic errors in the transcript were 

attributed to either a flaw in the algorithm generating the phonetic transcript (see Section  3.1), or to 

irregular pronunciation caused by a mistake by the talent or the nature of the word (foreign nouns). 

The former type of errors was dealt with by modifying the algorithm and rerunning the alignment. 

Two issues were found in the phonetic transcript after the first corrections phase: 
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1- Geminated consonant letter “ي” is pronounced inconsistently depending on context. If 

preceded by the diacritic ”  َٖ ”, the generated phonetic transcript is /ii0 y/. Otherwise - if 

preceded by a “  َٖ ” or a “  َٖ ”- it is transcribed as /u0 yy/ and /i0 yy/ accordingly. The reason 

for this issue is that no previous formalisation of the phonetic transcription of geminated 

 would ”ي“ was found and it was assumed that the effect of geminating a consonant ”ي“

always result in a separate consonant phone /yy/ but this was seen not to be the case in 

practice and in the context explained above, geminated “ي” is pronounced as a 

combination of a vowel followed by a consonant. 

2- Similar to the first issue, geminated consonant letter “و” is pronounced inconsistently based 

on the preceding short vowel. The only difference is that a preceding “  َٖ ” would cause the 

transcription to be a long vowel /uu0/ followed by a non-geminated /w/. 

Table (see Table 12) shows the number of inserted, deleted and altered tags in the three batches 

used to evaluate the first stage of (flat start) forced alignment. 

4.2 Boundary Types 

Feedback from experts indicated that correcting certain boundary types was more difficult than 

others because of strong co-articulation between phones. This led to the idea of categorising 

boundary types based on the type of articulation of surrounding phones (fricative, stop, trill…). For 

example, the boundary between the phones /q/ and /l/ is labelled a “stop/approximate” boundary or 

“st/ap” boundary or more specifically a “voiceless-stop/approximate” or “vl-st/ap” boundary (the 

latter being a subset of the former). For stops and fricatives, both the voiced and voiceless subsets 

were included in the analysis. This means that the boundary types are not disjoint sets and some 

sets are subsets of others (the above being an example). Vowels were all grouped together under 

the same articulation category, “vowels” or “vo”. 

The precision and shift metrics were calculated for each boundary type to show how accurately the 

forced alignment works for each type and the nature of shift happening in each type. This was 

inspired by feedback from the experts who found systematic shifts in the boundaries between the 

predicted and corrected timestamps. Also, it is already established that some boundary types, when 

realised in speech, correspond to abrupt changes in the acoustic features (intensity and spectrum) 

and hence could potentially be easier to detect by a machine (Yi 2003; Hosom 2009). 

Boundary types used in this work are shown in the results available through the web link (Halabi 

2015). 

Next, the forced alignment parameters and HMM topology used in the evaluation are presented to 

make is easier to compare with other works. 



 

41 

4.3 HTK Parameters 

HTK allows changing several parameters before running each of its components. It is not claimed 

here that all the choices for each of these parameters are optimal as, for some of these parameters, 

there haven’t been experiments conducted showing performance for different values. Most of the 

chosen values for the parameters were based on the HTK segmentation scheme (Young et al. 

1997). The parameters are the following: 

1- Acoustic Features (MFCC, LPC…): MFCC were chosen with 36 features for each window. 

HTK allows changing more specific parameters when it comes to MFCC feature extraction 

such as the number of filterbanks. All the values for these parameters were set according to 

the HTK segmentation scheme (Young et al. 1997). 

2- Pre-emphasis Parameter: Determines the extent to which the certain frequencies are 

boosted in the speech signal to decrease the effect of noise (Mporas et al. 2009; Young et 

al. 1997). The value used was 0.97 which is the one used in the HTK segmentation scheme 

(Young et al. 1997). 

3- Hamming Window: A true or false value indicating whether to use a hamming window. 

This was set to true, which was based on the literature where Hamming windows were 

almost always used (Yuan et al. 2013; Young et al. 1997; Prahallad 2010; Mporas et al. 

2009). Hamming windows is a window function which is zero or a very low value outside 

a certain range used to extract parts of a speech signal for analysis. 

4- Window Size: This is the length of the Hamming window used. This determines how long 

the segments of speech used for MFCC coefficient extraction are (see figure). The default 

value in the HTK segmentation scheme (Young et al. 1997) was used. 

5- Energy Normalisation: A true or false value indicating whether to normalise the log-energy 

(log-intensity) of the speech signal before extracting features. It was set to true which was 

the default value in the HTK segmentation scheme (Young et al. 1997). 

6- Topology: The HMM models used had 3 states (in addition to dummy start and end states) 

which is the most common in the literature. Emission probabilities were modelled as a 

single Gaussian in 36 dimensions for each of the MFCC coefficients. The transition 

probabilities between states are multinomial. As future work, it is intended to use more 

Gaussians for the emission probabilities. There are many possibilities here to adjust the 

number of mixtures and the number of channels to which each of the MFCC coefficients 

belong. 

7- Window Shift Rate: Called TARGETRATE in HTK. It is the shift applied to the window 

after each calculation of the MFCC coefficients. The default value in the HTK 

segmentation scheme (Young et al. 1997) was used. 
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4.4 Initial Evaluation (Flat Start) 

4.4.1 Alignment quality: 

Table 13 shows the precision values of all the metrics of the initial 3 batches of alignment. These 

contained 13166 boundaries (including boundaries with pauses) and 11311 phone boundaries 

(excluding boundaries with pauses). 1047 boundaries were skipped by the evaluation script out of 

the complete 13166 boundary set because of phone label mismatch between the automatically 

generated phonetic transcriptions and the experts’ corrections. This decision was made because 

boundaries corresponding to incorrect phonetic transcript affect the precision of alignment and 

would skew the results as the aligner would try to align script to a non-matching speech signal. The 

goal of this evaluation is to calculate the precision of the alignment knowing that a certain 

percentage of phone boundaries and labels were mismatching (7.9 % of boundaries in this case). 

12119 boundaries were left for analysis as shown in table (see Table 13). 68.49% of the predicated 

boundaries were within 20 milliseconds of the corrected boundaries. This is significantly lower 

than the precision achieved on the TIMIT corpus in previous work (Hosom 2009). The difference 

being that in this work, a different HMM topology was used, and the phonetic transcription was 

automatically generated by a rule based algorithm rather than depending on a human-generated 

pronunciation dictionary. This generated errors that affect the precision of the HMM forced 

alignment system.  

To increase this precision further analysis of the common errors detected by the experts and 

retraining of the system based on the manually aligned subset is done (see Section  4.5). 

Table 12 shows the number of insertions, deletions and updates the experts have done. The 

“Mismatching Boundaries” row does not simply equal the sum of the insertions, deletions and 

updates, because each one of these could either cause one or two mismatching boundaries. Overall, 

less than 8% of the boundaries were mismatching between the correction and automatically 

generated transcript and mostly due to recording errors or foreign words. This could be improved 

by adding a foreign-word pronunciation dictionary which does not exist for MSA. 

Table 12. Correction Statistics for three batches 

𝐵+ 133 (~1.0%) 

𝐵− 134 (~1.0%) 

𝐿𝑐 534 (~4.0%) 

Mismatching boundaries 1047 (~7.9%) 

There are no previous works on transcript corrections with which to compare these numbers. But it 

is important to note that there have been speech synthesis voices built on uncorrected automatically 

generated and aligned transcript in the past. In this work we attempt to find whether an uncorrected 
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portion of the corpus, aligned by a system trained on a corrected portion of the corpus, would be 

suitable for speech synthesis in MSA using a listening test. 

The rest of the results are available through Halabi (2015). They show the precision for different 

boundary types. It is easy to see that some boundary types correspond to significantly higher 

precision than others. 

Table 13. Precision of Initial forced alignment for general boundary types. Blue shows this work’s 

system. Red is the TIMIT Result by (Hosom 2009). “ph” stands for “phone”, “pa” stands for 

“pause”, “co” stands for “consonant” and “vo” stands for “vowel”. 

  𝑻 <0.005 <0.010 <0.015 <0.020 <0.025 <0.030 >0.050 𝑫𝑩
∗  𝑵𝑩 𝑫𝑩

+ 𝑫𝑩
− 𝑫𝑩

𝝈  

ph/ph 33.42 45.26 57.67 68.49 76.93 83.1 100 -0.00741 11311 2059 6534 0.002695 

vo/co 28.48 38.22 50.41 63.01 73.48 80.87 100 -0.01181 4955 580 3325 0.002874 

co/vo 37.66 52.06 64.91 74.21 80.69 85.89 100 -0.00231 5075 1277 2480 0.002782 

co/co 35.63 45.42 57.01 67.03 75.25 80.58 100 -0.01063 1277 202 727 0.001472 

Silence Boundaries 

pa/ph 28.07 29.82 32.89 40.79 57.46 75.44 100 0.002481 228 16 154 0.028729 

ph/pa 22.22 37.2 46.38 57.97 67.63 76.33 100 -0.00188 207 41 129 0.015074 

pa/co 28.07 29.82 32.89 40.79 57.46 75.44 100 0.002481 228 16 154 0.028729 

co/pa 21.05 46.05 60.53 69.74 76.32 80.26 100 -0.00815 76 14 48 0.00044 

vo/pa 22.9 32.06 38.17 51.15 62.6 74.05 100 0.001762 131 27 81 0.023527 

Reported TIMIT 

precision 

(Hosom 2009) 

48.42 79.30 89.49 93.36 95.38 96.74 100 - 

4.4.2 Expert Agreement: 

Because the alignment process takes a long time, batches of 50 utterances were distributed to two 

experts (each expert receiving a different batch of utterances). A third expert later checked their 

work and corrected any errors left. The two experts at the beginning were trained together to make 

sure that their alignments were as similar as possible but it is useful to know how close their 

alignments were. This is referred to in the literature as expert agreement or inter-annotator 

agreement  (Hosom 2009; Romportl 2010). We gave each expert 5 additional utterances that were 

part of the other expert’s workload giving a total of 10 utterances aligned by both experts to 

conduct an expert agreement test. 

To show how similar the alignments were between the experts. The same metrics were used as in 

the precision evaluation of the alignment – as found in the literature (Hosom 2009; Romportl 

2010). The only difference is that the number of changes in phone labels was calculated. This 

number is the sum of the number of labels changed, the number segments added by the experts and 

the number of segments removed by the experts. If the resulting phone label sequence does not 

match, the analysis script skips the boundaries and does not included them in the agreement 

analysis shown in Table 14. 
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In this test, both of the experts had to correct the predicted boundaries resulting from forced 

alignment rather than correcting each other’s. This is to estimate the agreement more accurately. 

Because if experts were given each other’s alignments, it might be tempting not to change 

boundaries if the error is too small (smaller to that found in the forced alignment output). 

Table 14 shows the results of comparing the alignment of 10 utterances between two of the experts. 

The 10 utterances contained a total of 981 phone boundaries (including ones with a pause) of which 

47 had changes in identity (phone label) applied to their adjacent phones by either or both experts 

which lead to non-matching boundaries which were excluded from the analysis even if accurate. 

One of the experts inserted 7 new segments that they thought were missing which the other did not 

and the other expert inserted 7 segments which the first expert did not include. This resulted in the 

system ignoring 97 boundaries when calculating precision. 884 overall phone boundaries were left 

for agreement analysis. 827 of those boundaries were boundaries between two phones (no pause) 

and the remaining had at least one adjacent pause. Note that two consecutive pauses are possible. 

84.28% of all boundaries were within 20 milliseconds of each other. As mentioned earlier, the 20 

millisecond tolerance is the de facto standard as found in the literature for evaluating alignment 

precision (Hosom 2009; Stolcke et al. 2014; Yuan et al. 2013) but also it is the standard for 

evaluating expert agreement. The highest precision in previous work for expert agreement was on 

the TIMIT corpus with 93.49% of boundaries generated by the author within 20 milliseconds of 

corresponding boundaries in the TIMIT corpus (Hosom 2009). In the same work, Hosom reviews 

previous work which shows results in expert agreement. All the reviewed attempts reported 

agreement of over 90% which poses the question: why is the agreement in this work lower? Hosom 

excluded two types of boundaries from their evaluation because they proposed that they were 

subjective and shouldn’t be in the precision analysis.  No boundaries were excluded in this work. 

But still this leaves a significant difference in agreement which lead to a third expert running 

through the two experts’ alignments (specially the points of disagreement) and normalising the 

alignment. This is not as laborious a task compared to the initial alignments as it only requires that 

the expert to review about 10% to 20% of the corpus. This mainly occurred at the boundaries that 

were not included in the analysis due to experts disagreeing in the segment’s label or boundaries of 

a type corresponding to a lower precision score. 

This stage helped identify misunderstandings in the labelling, segmentation and alignment 

processes by the experts, which they were informed about for more agreement in future manual 

alignment and corrections. 
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Table 14. Expert Agreement Analysis Results. 

𝑻 <0.005 <0.010 <0.015 <0.020 <0.025 <0.030 >0.050 𝑫𝑩
∗  𝑵𝑩 𝑫𝑩

+ 𝑫𝑩
− 𝑫𝑩

𝝈  

ph/ph 42.63 59.81 73.93 84.53 90.86 95.01 100 0.010362 821 376 258 0.047647 

vo/co 42.35 59.29 74.04 84.15 91.53 95.63 100 0.00566 366 199 84 0.000206 

co/vo 43.24 61.54 76.13 86.74 93.1 96.82 100 9.33E-05 377 148 147 0.000176 

co/co 41.56 54.55 63.64 76.62 77.92 84.42 100 0.001998 77 28 27 0.000349 

vo/vo 0 0 0 0 0 0 0 0 0 0 0 0 

Silence Boundaries 

pa/ph 18.75 31.25 37.5 37.5 50 68.75 100 0.019574 16 13 1 0.000204 

ph/pa 7.14 14.29 42.86 57.14 64.29 64.29 100 -0.01578 14 2 11 0.000728 

pa/co 13.33 26.67 33.33 33.33 46.67 66.67 100 0.020879 15 13 1 0.000191 

pa/vo 0 0 0 0 0 0 0 0 0 0 0 0 

co/pa 16.67 16.67 50 50 50 50 100 -0.01436 6 1 4 0.001432 

vo/pa 0 12.5 37.5 62.5 75 75 100 -0.01685 8 1 7 0.000197 

TIMIT 

Agreement 

Results 

60.38 81.73 89.07 93.49 95.36 96.91 100 - 

 

4.5 HTK Bootstrapping 

At each iteration and after the correction of 150 utterances was completed with a second revision, 

another automatic segmentation was conducted with the manually corrected data as input to 

bootstrap HMM models. HInit was used to initialise the parameters of the HMM model/s used for 

the different phones. HInit is an HTK tool that initialises the phone HMM parameters by using 

manual segmentations. For each phone, all the available segments for that phone in the training 

data were loaded and used to iteratively update the parameters of the phone’s initial HMM using 

Viterbi training (Jurafsky & Martin 2008). Viterbi training works in a slightly different way than 

the Baum-Welch algorithm described in (see Section  3.3). In it, each of the phone’s segments are 

divided equally between the states of the phone’s HMM then these divisions are used to calculated 

each of the HMM’s states’ parameters. The new HMM model with the new parameters was utilised 

by the Viterbi algorithm to find the most likely sequence of states (under the new model) and the 

operation is repeated until convergence. These parameters include the means and variances of the 

Gaussians whose mix makes up the observation probability distributions and the transition matrixes 

which define the transition probabilities between states. 

Then the training process continued in the same way as in stage 1 using the parameters estimated 

from HInit as a starting point instead of the output of HCompV. Note that HCompV was still run in 

this stage as it is required to produce the variance floors and HRest is iteratively run (Baum-

Welch). 

Table 15 shows the improved results after bootstrapping. A significant improvement from 68% to 

82% is achieved. It is important to note that the results in Table 15 are based on 50 utterances 
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which is about one third of the amount used for the flat start evaluation. This included 3320 

phone/phone boundaries. For the complete set of results please refer to the link (Halabi 2015). 

Table 15. Alignment results after bootstrapping. 

𝑻 <0.005 <0.010 <0.015 <0.020 <0.025 <0.030 >0.050 𝑫𝑩
∗  𝑵𝑩 𝑫𝑩

+ 𝑫𝑩
− 𝑫𝑩

𝝈  

ph/ph 32.77 56.14 71.57 82.5 88.73 92.8 100 -0.00521 3320 961 1921 0.000267 

vo/co 30.25 50.76 67.33 80.52 86.95 91.78 100 -0.00862 1448 293 948 0.000266 

co/vo 35.78 62.35 77.1 86.32 91.52 94.59 100 -0.00146 1498 562 770 0.000233 

co/co 30.38 52.15 65.59 74.73 84.41 89.52 100 -0.00706 372 105 203 0.000303 

vo/vo 0 0 0 0 0 0 0 0 0 0 0 0 

Silence Boundaries 

pa/ph 27.47 57.14 72.53 84.62 91.21 92.31 100 -0.00456 91 37 49 0.000337 

ph/pa 15.29 41.18 51.76 67.06 72.94 77.65 100 -0.00862 85 27 55 0.001062 

pa/co 27.47 57.14 72.53 84.62 91.21 92.31 100 -0.00456 91 37 49 0.000337 

pa/vo 0 0 0 0 0 0 0 0 0 0 0 0 

co/pa 13.33 40 46.67 70 73.33 80 100 -0.01547 30 7 22 0.001185 

vo/pa 16.36 41.82 54.55 65.45 72.73 76.36 100 -0.00488 55 20 33 0.000955 

TIMIT 

Agreement 

Results 

48.42 79.30 89.49 93.36 95.38 96.74 100 - 

4.6 Precision Comparison 

The next stage involves showing the precision of the system in this work relative to the highest 

precision systems in other works in the literature. As shown in Table 16, 93.36 𝑃20 is the highest 

found in literature (Hosom 2009). The system used HMM/ANN (Hidden Markov Models paired 

with Neural Networks for feature extraction) as a baseline system to compare it with their modified 

HMM/ANN system which achieved the higher precision mentioned above by adding features on 

top of the MFCC feature set used in their work as well. These features included energy and burst 

detection features to help give areas of rapid acoustic feature changes more chance of being 

detected as boundaries. 

Hosom 2009 also trained their system on part of the TIMIT corpus and did not perform any forced 

alignment. They claimed that regular HMM forced alignment system (similar to the one in this 

work) did not perform as well as theirs. They used two fifths of the dataset for evaluation and three 

fifths for training. 

It is easy to see from Table 16 that using an HMM/ANN system would improve the precision. It is 

also possible to infer this from the improvement HMM/ANN systems give to speech recognition 

relative to pure HMM (Hosom 2009). It was not possible to obtain or implement a version of it for 

this work but is suggested for use in future work (see  Chapter 5:). Improving either the HMM 

forced alignment or the HMM/ANN system is not part of this work, it is used to demonstrate the 

correctness of the phone set and pronunciation rules produced by the automatic phonetic transcript 

generation system and the overall quality of the corpus. 
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As shown in Table 16, the system proposed in this work approaches the state of the art HMM 

forced alignment systems but still lags behind HMM/ANN. The difference in the evaluation setup 

of each system is detailed in this table. 

Table 16. Precision comparison 

Metric Basic HMM forced 

alignment on MSA 

Basic HMM forced 

alignment on MSA 

(with 

bootstrapping) 

Baseline HMM/ANN 

forced alignment on 

TIMIT (Hosom 2009) 

(Hosom 2009) 

Proposed System 

Feature used MFCC (basic HTK 

setting) (Young et 

al. 1997) 

MFCC (basic HTK 

setting) (Young et 

al. 1997) 

MFCC with mel scale 

replaced by Bark scale 

MFCC with mel 

scale replaced by 

Bark scale. With 

additional energy-

based features 

Model Architecture 1 Gaussian to model 

emition 

probabilities. Basic 

3-state HMM 

architecture. (Young 

et al. 1997) 

1 Gaussian to model 

emition 

probabilities. Basic 

3-state HMM 

architecture. (Young 

et al. 1997) 

HMM with ANN 

instead of Mixture of 

Gaussians 

HMM with ANN 

instead of Mixture 

of Gaussians. With 

modifications on 

the state structure 

of the HMM. 

Dataset used Recorded as part of 

this work 

Recorded as part of 

this work 

TIMIT TIMIT 

Training data size Unsupervised 150 utterances 

Approximately 25 

minutes of speech 

3696 files (3.145 hours 

of speech) 

3696 files (3.145 

hours of speech) 

Evaluation data size 150 utterances 

Approximately 25 

minutes of speech 

 

50 utterances 

Approximately 

6 minutes of speech 

1344 “si” and “sx” file 

from TIMIT corpus 

1344 “si” and “sx” 

file from TIMIT 

corpus 

Language MSA MSA English English 

Precision (𝑷𝟐𝟎) 68.49 82.50 91.48 93.36 
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Chapter 5: Conclusions and Future Work 

A challenge remains to evaluate the contributions in this work. So far, the contributions could be 

listed as follows: 

1- An MSA speech corpus for speech synthesis. 

2- An MSA phoneme set for MSA spoken in a Levantine dialect. 

3- An MSA Phonotactic Rule-set for converting MSA text to a phoneme sequence in 

Levantine accent. 

Mainly, the contributions given in this work so far are in formalising MSA phonology for MSA 

speech corpus design and Arabic speech synthesis. The claim here is that this formalisation should 

help both in speeding up the corpus design and alignment process by: 

1- Automatically phonetising MSA transcripts: The correctness of the automatic phonetiser 

produced in this work can only be verified by experts. This is because the pronunciation of 

MSA depends on the speaker’s dialect. The iterative process described in this work for 

verifying the phonotactical rule-set was done by experts who are native speakers and 

teachers of Arabic language. 

2- Using the phonetised script to choose the optimal subset of the script based on phonetic 

coverage for recording. We have shown the distribution of diphones and phonemes in the 

chosen transcript after reducing it to an optimal subset. As no work has been done before 

on corpus design in Arabic, a comparison to English corpus design was undertaken. A 

future work would be to attempt other optimisation methods and compare the results in 

Arabic. 

Another claim is that the formalisation of MSA phonology would help in creating better front-ends 

for TTS systems. This is to be conducted in the future in this work. By building a speech 

synthesiser using this corpus and the phonetiser generated from this work, a standardised listening 

test will be conducted to evaluate the corpus in naturalness and intelligibility. It is also useful to 

add other metrics to differentiate between the quality issues or benefits resulting from recording, 

transcript, segmentation or alignment; or from the speech engine itself. 

In short, the next stage of this work will include finding the methods and metrics to evaluate the 

quality of a TTS system built using the corpus, phonotactic rule-set and phoneme set produced in 

this work, and then conducting the evaluation based on these methods and metrics. If possible, a 

comparative study with previous attempts in MSA or other languages will also be conducted. 

As shown in Figure 4, the next stage of this PhD work involves two main phases: 
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1- Improving Segmentation and Alignment results: The 82.5% precision within 𝑇20 is still 

significantly lower than the reviewed works. In this work, it is intended to try more 

complicated HMM topologies and employ the results from the different boundary types to 

perform boundary refinement. 

Segmentation and alignment quality is affected by mismatching annotations caused by 

foreign words. Foreign words imported into MSA script also require separate treatment 

when phonetising MSA script. This will be solved by creating a pronunciation dictionary 

for foreign words. If a foreign word is encountered which is not included in this dictionary, 

building a separate foreign word phonetiser would be a possibility. 

2- Building Synthesiser: To evaluate the quality of the generated speech corpus, it is intended 

to build a speech synthesiser to conduct subjective listening tests. There are previously 

designed tests for English so a challenge here would be to map those to Arabic to be able to 

compare this work’s corpus to others. 

It is important to note here that there are no intentions to produce contributions to the 

frond-end or back-end of the synthesiser. This stage is merely for evaluating the speech 

corpus. 
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Figure 4. Future work's Gantt chart 
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Appendices 

Appendix A Acoustic Features 

All speech recognition and segmentation systems do not perform inference directly on the speech 

frames. There is always a layer that transforms the raw speech data to a sequence of feature vectors 

that are calculated from a window with a certain width and shifted by a certain amount to calculate 

the next frame. The window size and shift (offset) are always measured in milliseconds and typical 

they are 20-25 ms and 5-10 ms accordingly (Young et al. 1997). 

The majority of the methods reviewed use mel frequency cepstral coefficients (MFCC) as acoustic 

features and often in combination with other features. These are extracted from the acoustic signal 

before any training or inference is done. 

MFCC (Jurafsky et al.,2008) are a set of coefficients that have been found to have strong 

correlation with the vocal tract physical state of a human being and from this physical state it is 

possible to determine which phone is being uttered. This justifies the choice of MFCC as features 

because it enables the classification of phones from the vocal tract’s physical state to then be 

classified from a correlated parameter that is MFCC. 

MFCC are a representation of the speech signal that tries to ignore the unwanted information about 

the speech signal like speaker identity and the loudness of speech. In tasks like speech recognition 

we are not interested to know if the speaker is a male or a female (unless we are performing 

speaker recognition) or how loud they are speaking rather we want to know which phone they are 

uttering, so two speakers with different sound characteristics and possibly gender should generate 

similar MFCC when uttering the same phones. 

There were attempts to improve MFCC precision in speech segmentation by using it alongside 

other features. (Hosom, 2009) tried adding additional features related to bursts or sudden increase 

in loudness and intensity of speech which could indicate occurrences of events such as phone 

boundaries. Even though MFCC does have loudness and intensity change detection characteristics, 

they have argued that their additions make the system more sensitive to those changes. The claimed 

that these feature additions have improved boundary detection for most boundary types. 

Perceptual Linear prediction (PLP) (Hermansky, 1990) shares similarities with MFCC. It is also 

inspired by the human auditory system. The main difference in PLP (Honig et al., 2005) is that it 

performs Linear Predictive Coding (LPC) to the pre-emphasised Bark scale transformed power 

spectrum which generates an approximation of this spectrum. All this is before moving to the 

cepstral coefficients similar to MFCC. From the literature, no claim has been found that this linear 
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coding step simulates any stage of hearing in the auditory system and it appears to be just a 

dimension reduction method. 

Other feature extraction techniques have been encountered such as Discrete Cosine Transform 

Coefficients (DCTC) and LPC coefficients. The former is strongly related to MFCC and PLP as it 

estimates the cepstrum of the speech. The latter is strongly related to the human vocal tract state. 

(Karnjanadecha et al., 2012) conducted a comparison between different types MFCC, PLP and 

DCTC and showed that MFCC is best when using 39 cepstral and energy coefficients but they also 

showed that DCTC with 78 cepstral and energy coefficients out performed all the other methods 

but did not test for more coefficients for MFCC and PLP. 

Appendix B Arabic Phonology 

Arabic phonology is made up of 28 consonants each of which could be geminated. A geminated 

consonant was considered a separate phoneme in this work (see Table 17). 

Gemination is linguistically defined as the doubling of a consonant. Phonetically, it usually 

involves lengthening part of the consonant making it approximately twice as long as the original. 

When describing syllables using “c” and “v” characters, geminated consonants are either 

symbolised as “C” or “cc”, the former is used in this work. The latter symbolisation is used to show 

that a geminated consonant’s parts belong to different syllables unless it occurs at the end of speech 

(de Jong & Zawaydeh 1999). 

4 extra consonants where added to the table because they occurred in the corpus in foreign words 

but were not included in optimisation. Overall there are 56 consonant phonemes included in this 

work for optimisation. 

7 of the Arabic consonants are considered strictly “emphatic” and the same goes for their 

gemination. 2 other consonants and their gemination are considered optionally emphatic 

(depending on context). 

Emphasis propagates from emphasised consonants to adjacent vowels and optionally emphatic 

consonants causing them to become emphatic. 2 of the 7 emphatic consonants (/x/ and /g/) are only 

forward emphatic (emphasis from them only propagates to following vowels). 
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Table 17. Arabic consonant phonemes. IPA representation is enclosed in brackets if phoneme is 

found in foregin words only. Orange coloured consonants are strictly  emphatic. Blue 

coloured consonants are optionally emphatic. 

  Labial 

Libio-

dental 

Emphatic  Plain 
Palato- 

alveolar  

Palatal  Velar  Uvular  

Pharyngea

l/ 

Epiglottal 

Glottal  

Dental  Alveolar  Alveolar  Dental  

Nasal (Always voiced) m م      n ن               

Stop  

voiceless  

(p) پ  tˤ ط t ة ت     k ك q ق   ʔ ءَأَإَؤَئ 

voiced  

b ب  dˤ ض d د 
 

  g ج       

Affricate      d͡ʒ َج      

Fricative  

voiced  

 
(v) ڤ ðˤ~zˤ ظ z ز ð ذ ʒ ج  ɣ~ʁ غ ʕ~ʢ̰ ع   

voiceless  

 
f ف   sˤ ص s س θ ث ʃ ش   x~χ خ ħ~ʜ ح h هـ 

Approximant  

w وَ     ɫ~l ل     j ي         

Trill 

     rˤ~r ر               

In this work, 10 vowel phonemes in Arabic are used (see Table 18). There are two diphthongs 

which are considered to be a combination of a vowel and a consonant rather than a separate 

phoneme and were not included in the table. 

Table 18. Arabic vowel phonemes 

Vowel /a/ /A/ /a:/ /A:/ /u/ /u:/ /i/ /i:/ /u1/ /i1/ 

Arabic 

Script 

 َٖ  

Possibly 

Pharyngealized 

 اَى

Possibly 

Pharyngealized 

 َٖ َٖ  و  َٖ  ي    َٖ  

 

 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Labial_consonant
http://en.wikipedia.org/wiki/Emphatic_consonant
http://en.wikipedia.org/wiki/Palato-alveolar_consonant
http://en.wikipedia.org/wiki/Palato-alveolar_consonant
http://en.wikipedia.org/wiki/Palatal_consonant
http://en.wikipedia.org/wiki/Velar_consonant
http://en.wikipedia.org/wiki/Uvular_consonant
http://en.wikipedia.org/wiki/Pharyngeal_consonant
http://en.wikipedia.org/wiki/Pharyngeal_consonant
http://en.wikipedia.org/wiki/Epiglottal_consonant
http://en.wikipedia.org/wiki/Glottal_consonant
http://en.wikipedia.org/wiki/Dental_consonant
http://en.wikipedia.org/wiki/Alveolar_consonant
http://en.wikipedia.org/wiki/Alveolar_consonant
http://en.wikipedia.org/wiki/Dental_consonant
http://en.wikipedia.org/wiki/Nasal_stop
http://en.wikipedia.org/wiki/Bilabial_nasal
http://en.wikipedia.org/wiki/Alveolar_nasal
http://en.wikipedia.org/wiki/Stop_consonant
http://en.wikipedia.org/wiki/Voiceless_consonant
http://en.wikipedia.org/wiki/Voiceless_bilabial_stop
http://en.wikipedia.org/wiki/Pharyngealization
http://en.wikipedia.org/wiki/Voiceless_alveolar_stop
http://en.wikipedia.org/wiki/Voiceless_velar_stop
http://en.wikipedia.org/wiki/Voiceless_uvular_stop
http://en.wikipedia.org/wiki/Glottal_stop
http://en.wikipedia.org/wiki/Voiced_consonant
http://en.wikipedia.org/wiki/Pharyngealization
http://en.wikipedia.org/wiki/Voiced_alveolar_stop
http://en.wikipedia.org/wiki/Voiced_palato-alveolar_affricate
http://en.wikipedia.org/wiki/Fricative_consonant
http://en.wikipedia.org/wiki/Voiced_consonant
http://en.wikipedia.org/wiki/Voiced_labiodental_fricative
http://en.wikipedia.org/wiki/Pharyngealization
http://en.wikipedia.org/wiki/Pharyngealization
http://en.wikipedia.org/wiki/Voiced_alveolar_sibilant
http://en.wikipedia.org/wiki/Voiced_dental_fricative
http://en.wikipedia.org/wiki/Voiced_palato-alveolar_sibilant
http://en.wikipedia.org/wiki/Voiced_velar_fricative
http://en.wikipedia.org/wiki/Voiced_uvular_fricative
http://en.wikipedia.org/wiki/Voiced_pharyngeal_fricative
http://en.wikipedia.org/wiki/Voiced_epiglottal_fricative
http://en.wikipedia.org/wiki/Voiceless_consonant
http://en.wikipedia.org/wiki/Voiceless_labiodental_fricative
http://en.wikipedia.org/wiki/Pharyngealization
http://en.wikipedia.org/wiki/Voiceless_alveolar_sibilant
http://en.wikipedia.org/wiki/Voiceless_dental_non-sibilant_fricative
http://en.wikipedia.org/wiki/Voiceless_palato-alveolar_sibilant
http://en.wikipedia.org/wiki/Voiceless_velar_fricative
http://en.wikipedia.org/wiki/Voiceless_uvular_fricative
http://en.wikipedia.org/wiki/Voiceless_pharyngeal_fricative
http://en.wikipedia.org/wiki/Voiceless_epiglottal_fricative
http://en.wikipedia.org/wiki/Voiceless_glottal_fricative
http://en.wikipedia.org/wiki/Approximant
http://en.wikipedia.org/wiki/Labio-velar_approximant
http://en.wikipedia.org/wiki/Velarized_alveolar_lateral_approximant
http://en.wikipedia.org/wiki/Alveolar_lateral_approximant
http://en.wikipedia.org/wiki/Palatal_approximant
http://en.wikipedia.org/wiki/Trill_consonant
http://en.wikipedia.org/wiki/Pharyngealization
http://en.wikipedia.org/wiki/Alveolar_trill
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